Give me any word, I’ll show the Greek root....
Give me any word, I’ll show the Greek root....
Give me any word, I’ll show the Greek root....
Give me any word, I’ll show the Greek root....
Agroecology: An uneasy marriage?
Agroecology: An uneasy marriage?

Agronomy

- Applied Science
- Human Practices
- Artificial Patterns
- Economic Valuation (Yield)
Agroecology: An uneasy marriage?

Agronomy
- Applied Science
- Human Practices
- Artificial Patterns
- Economic Valuation (Yield)

Ecology
- Basic Science
- Natural Patterns
- Energetic or Elemental Valuation (Productivity)
Agroecology: An uneasy marriage?

Agronomy
- Applied Science
- Human Practices
- Artificial Patterns
- Economic Valuation (Yield)

Ecology
- Biological Mechanisms
- Natural Process
- Measures of system productivity

- Basic Science
- Natural Patterns
- Energetic or Elemental Valuation (Productivity)
Agroecology: A Brief History

- 1920's: Birth of Crop Ecology/Biogeography
- 1930's-1940's: Genesis of input agriculture
- 1950's: Ecosystem concept re-developed
- 1960-1970's: Agricultural systems used for ecological research
- 1980's: Development of textbooks
- 1990's: Recognition by ESA, Agroecology Subsection
- Present: Agroecology expanded to include Food Systems
A Few Important Agroecologists

• Steve Gliessman (UCSC)
• Miguel Altieri (UCB)
• John Vandermeer (UM)
Agroecology in Action
Extending Alternative Agriculture through Social Networks

Keith Douglass Warner
Foreword by Fred Koehl

Image of a tractor in a field and a landscape with green fields.
Autotroph Density in Marine and Terrestrial Ecosystems

NPP by Ecosystem

<table>
<thead>
<tr>
<th>Type of Ecosystem</th>
<th>Average World Net Primary Productivity (billion kcal/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open ocean</td>
<td>180</td>
</tr>
<tr>
<td>Tropical rain forest</td>
<td>130</td>
</tr>
<tr>
<td>Temperate forest</td>
<td>90</td>
</tr>
<tr>
<td>Savanna</td>
<td>80</td>
</tr>
<tr>
<td>Northern coniferous forest (taiga)</td>
<td>70</td>
</tr>
<tr>
<td>Continental shelf</td>
<td>60</td>
</tr>
<tr>
<td>Agricultural land</td>
<td>50</td>
</tr>
<tr>
<td>Temperate grassland</td>
<td>40</td>
</tr>
<tr>
<td>Woodland and shrubland</td>
<td>30</td>
</tr>
<tr>
<td>Estuaries</td>
<td>20</td>
</tr>
<tr>
<td>Swamps and marshes</td>
<td>10</td>
</tr>
<tr>
<td>Desert scrub</td>
<td>5</td>
</tr>
<tr>
<td>Lakes and streams</td>
<td>2</td>
</tr>
<tr>
<td>Tundra (artic and alpine)</td>
<td>1</td>
</tr>
<tr>
<td>Extreme desert</td>
<td>0</td>
</tr>
</tbody>
</table>
Ecosystem Trophic Structure

- Producers: 1,000 kcal
- Primary Consumers: 100 kcal
- Secondary Consumers: 10 kcal
- Tertiary Consumers: 1 kcal
Ecosystem Trophic Structure

The Soil Food Web

Producer

First trophic level: Photosynthesizers

Second trophic level: Decomposers
Mycorrhizal fungi
Mutualists
Saprophytic fungi
Pathogens, parasites
Root-feeders

Third trophic level: Shredders
Protozoa
Nematodes
Nematodes
Fungal- and bacterial-feeders
Animals

Fourth trophic level: Higher level predators

Fifth and higher trophic levels: Higher level predators
Ecosystem Trophic Structure

The Soil Food Web

Producer

1° Consumers

Plants
Shoots and roots

Organic Matter
Waste, residue and metabolites from plants, animals and microbes.

Fungi
Mycorrhizal fungi
Saprophytic fungi

Nematodes
Root-feeders

Arthropods
Shredders

Protozoa
Amoebae, flagellates, and ciliates

Bacteria

Nematodes
Fungal- and bacterial-feeders

Nematodes
Predators

Arthropods
Predators

Birds

Animals

First trophic level:
Photosynthesizers

Second trophic level:
Decomposers
Mutualists
Pathogens, parasites
Root-feeders

Third trophic level:
Shredders
Predators
Grazers

Fourth trophic level:
Higher level predators

Fifth and higher trophic levels:
Higher level predators
Ecosystem Trophic Structure

1° Consumers

- Nematodes (Root-feeders)
- Fungi (Mycorrhizal fungi, Saprophytic fungi)
- Bacteria

2° Consumers

- Arthropods (Shredders, Predators)
- Protozoa (Amoebae, flagellates, ciliates)
- Nematodes (Predators)
- Animals
- Birds

First trophic level: Photosynthesizers
Second trophic level: Decomposers, Mutualists, Pathogens, parasites Root-feeders
Third trophic level: Shredders, Predators, Grazers
Fourth trophic level: Higher level predators
Fifth and higher trophic levels: Higher level predators
Systems Theory

- Ecosystems are one type of system
- System: a group of independent but interrelated elements comprising a unified whole
- Systems are composed of components linked by flows enclosed in a boundary
- Systems typically exhibit "emergent properties"
- Complex behaviors that appear from simpler interactions
- Energy flow, nutrient cycles, dynamic equilibrium
Often used for energy but can be adapted to any type of flow
Systems Diagrams

Howard T. Odum’s Generic Symbols for System Diagrams

- SOURCE
- CONSUMER
- STORE
- PRODUCER
- SINK
- FLOW
- SWITCH
- TRANSACTION
- SELF LIMITER
- INTERACTION

Often used for energy but can be adapted to any type of flow.
photosynthesis

WATER + LIGHT = CHEMICAL ENERGY

1. Chloroplasts trap light energy

2. Water enters leaf

3. Carbon dioxide enters leaf through stomata

4. Sugar leaves leaf

CHEMICAL ENERGY + CARBON DIOXIDE = SUGAR
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Water

Nutrients

Light

Carbon Dioxide

Evaporation transpiration

Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
C3 --> optimized for cool temps.
C4 --> optimized for warmer temps.
Light and Moisture are Controlled by Microclimate

• A microclimate is a local atmospheric zone where the climate differs from the surrounding area. The term may refer to areas as small as a few square feet (for example a garden bed) or as large as many square miles (for example a valley or lake effect).

• Light, Temp., Humidity, and Wind are all components of microclimate
Also PAR

Blue and Red Primary Photo. Wavelengths
Light Quality, Intensity, and Duration

- **Quality**: The ratio of different spectra
 - Differs among plant species

- **Intensity**: The total energy content of all PAR light (cal/cm² or W)

- **Duration**: Time spent with adequate light (photoperiod)

- **Saturation Point**: is the intensity at which a leaf no longer absorbs more energy

- **Compensation point**: intensity at which photosynthesis takes place
Light Environment Determinants

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Quality</th>
<th>Intensity</th>
<th>Duration</th>
<th>Managable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonality</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>With large E inputs</td>
</tr>
<tr>
<td>Altitude</td>
<td>X</td>
<td>X</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Topography</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>NO</td>
</tr>
<tr>
<td>Air Quality</td>
<td>X</td>
<td>X</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Canopy Structure</td>
<td>X</td>
<td>X</td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>
Relative Rate of Transmission and LAI

FIGURE 4.6 Light attenuation under the canopy of a squash monoculture, a corn monoculture, and a corn/squash intercrop. The data for each crop show the percentage of full sunlight remaining at each of six horizontal levels. (From Fujiyoshi, 1997)
Temperature

- Temperature is the result of IR absorption by the earth and atmosphere
- Temperature moderates the metabolism of all living things
- In Plants high temps. lead to desiccation
- Low temps lead to freezing
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth’s axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect

FIGURE 5.1 The effect of latitude on solar gain. The higher the latitude, the greater the distance that solar radiation must travel through the atmosphere ($D_2 > D_1$) and the greater the surface area over which a certain amount of solar radiation is spread ($A_2 > A_1$).
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth’s axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect

Figure 5.1 The effect of latitude on solar gain. The higher the latitude, the greater the distance that solar radiation must travel through the atmosphere ($D_2 > D_1$) and the greater the surface area over which a certain amount of solar radiation is spread ($A_2 > A_1$).
Components of Temperature Variation

- **Latitudinal Variation:** The angle intercept of EM radiation
- **Altitudinal Variation:** Decrease with increasing elevation
- **Seasonal Variation:** Orientation of earth's axis
- **Maritime Variation:** Thermal mass of water
- **Topographic Variation:** Aspect + valley effect
Components of Temperature Variation

- **Latitudinal Variation**: Angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
Components of Temperature Variation

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
Variations in Temperature

- **Latitudinal Variation**: The angle intercept of EM radiation
- **Altitudinal Variation**: Decrease with increasing elevation
- **Seasonal Variation**: Orientation of earth's axis
- **Maritime Variation**: Thermal mass of water
- **Topographic Variation**: Aspect + valley effect
"La Milpa": Corn/bean/squash interplanting

Corn provides scaffold for beans

Squash "fills in" below corn

Corn = C4, Bean and Squash = C3
Ammonium or Nitrates
Micronutrients
Potassium
Phosphates

Figure 24. Photosynthesis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.
FIGURE 1.3 The many functions of soil can be grouped into five crucial ecological roles.
FIGURE 1.3 The many functions of soil can be grouped into five crucial ecological roles.
FIGURE 1.3 The many functions of soil can be grouped into five crucial ecological roles.
FIGURE 1.3 The many functions of soil can be grouped into five crucial ecological roles.
FIGURE 1.3 The many functions of soil can be grouped into five crucial ecological roles.
FIGURE 1.3 The many functions of soil can be grouped into five crucial ecological roles.
Chemical Weathering

- **Hydration**: addition of water
- **Hydrolysis**: cation replacement with H ions
- **Solution**: Carbonic leaching
 - Ca and Mg carbonates
- **Oxidation**: conversion of Fe or Al
Transported Soils

- **Colluvium**: gravity transport
- **Alluvium**: H2O transport
- **Glacial**: Glacial transport
- **Eolian**: wind transport
Biotic Processes

- Rooting
 - Physical breakage with roots
 - Transportation of minerals
- Decomposition and Mineralization
 - Cycling of biotic materials
 - Organic acids add to chemical weathering
- *Humus* formation: stable organic compounds
Soil Characteristics

- Texture
- Structure
- Color
- Cation-Exchange Capacity
- pH
- Salinity and Alkalinity
Soil Structure

- Granular
- Platy
- Blocky (Subangular)
- Angular
- Prismatic
- Columnar
Cation-Exchange Capacity

Diagram showing various cations such as H+, Na+, NH4+, Ca++, and Mg++ around a central structure.
Soil pH

- Nitrogen
- Phosphorus
- Potassium
- Calcium and Magnesium
- Sulphur
- Boron
- Copper and Zinc
- Molybdenum
- Iron and Managanese
- Aluminium

Soil pH Levels:
- Extremely Acidic
- Very Strongly Acidic
- Strongly Acidic
- Moderately Acidic
- Slightly Acidic
- Neutral
- Slightly Alkaline
- Moderately Alkaline
- Strongly Alkaline
- Very Strongly Alkaline

- Actinomycetes
- Fungi
Soil Horizons

Table 8.1: Four Types of Soil Development

<table>
<thead>
<tr>
<th>Development Process</th>
<th>Moisture</th>
<th>Temperature</th>
<th>Typical Vegetation</th>
<th>Resulting Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleization</td>
<td>High</td>
<td>Cold</td>
<td>Tundra</td>
<td>Compact horizons, little biological activity</td>
</tr>
<tr>
<td>Podzolization</td>
<td>High</td>
<td>Cool to warm</td>
<td>Needle-leaf forest, deciduous forest</td>
<td>Light-colored A horizon; yellow-brown B horizon high in iron and aluminum</td>
</tr>
<tr>
<td>Laterization</td>
<td>High</td>
<td>Warm to hot</td>
<td>Rainforest</td>
<td>Weathered to great depth; indistinct horizons; low in plant nutrients</td>
</tr>
<tr>
<td>Calcification</td>
<td>Low</td>
<td>Cool to hot</td>
<td>Prairie, steppe, desert</td>
<td>Thick A horizon rich in calcium, nitrogen, and organic matter (except in deserts)</td>
</tr>
</tbody>
</table>

- Profiles actually a continuum
- Four major types of soil development
 - Gleization
 - Podzolization
 - Laterization
 - Calcification

 Strongly tied to Climate and Biotic Elements
Soil Horizons

Organic Matter: Undecomposed Plant Materials

Surface Soil: Mineral and Organic Mix

Subsoil: Mineral, Clay, Aluminum, Organic Compounds

Parent Rock: Unbroken Rocks
Soils and Nutrient Availability

- Insufficient quantity = limiting nutrient
- "Law of the Limit" Lieburg
- Presence DOES NOT = Availability
- pH, CEC, soil texture affect availability
Soil Organic Matter

Where does it go?
(Decomposition pools)

Residues

Intermediate pool
Resists decomposition
Intermediate C:N ratio
Cellulose, hemicellulose

Labile pool
Readily decomposed
Low C:N ratio
Sugar, protein, starch

Resistant pool
Very resistant to decomposition
High C:N ratio
Lignin (Humus)
Soil Organic Matter

• Provides Nutrients
• Supports the Soil Food Web
• Increases H2O holding capacity
• Reduces bulk density
• Protects soil surface
• Reduced by tillage
Biogeochemical Cycles

- Atmosphere
- Biosphere
- Hydrosphere
- Geosphere
Carbon Cycle
Non-Gaseous Macronutrients
How might these elements figure into the Laws of Minimum and Return?
TABLE 11.1
Types of Two-Species Interactions as Defined by Odum

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
<th>Nature of Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0</td>
<td>A 0</td>
<td>Neither organism affects the other</td>
</tr>
<tr>
<td>Competition</td>
<td>- - 0 0</td>
<td></td>
<td>Both A and B affected negatively</td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ + - -</td>
<td></td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ + 0 0</td>
<td></td>
<td>Not oblige</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0 - 0</td>
<td></td>
<td>A obligate commensal; B host</td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0 0 0</td>
<td></td>
<td>A harmed by presence of B</td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ - - 0</td>
<td></td>
<td>A parasite. B host</td>
</tr>
<tr>
<td>Predation</td>
<td>+ - - 0</td>
<td></td>
<td>A predator. B prey</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; – organism growth decreased; 0 organism growth not affected.
TABLE 11.1
Types of Two-Species Interactions as defined by Odum

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0 B 0</td>
<td>A 0 B 0</td>
</tr>
<tr>
<td>Competition</td>
<td>- - 0 0</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ + - -</td>
<td>+ + - -</td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ + 0 0</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0 - 0</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0 0 0</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ - - 0</td>
<td>- - 0 0</td>
</tr>
<tr>
<td>Predation</td>
<td>+ - - 0</td>
<td>- - 0 0</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; − organism growth decreased; 0 organism growth not affected.

Graph:
- **Gossypium hirsutum yield reduction (%):**
 - 1998: \(y = \frac{(21.85 \times x)}{1 + (x \times 21.85/100)} \)
 - \(R^2 = 0.96 \)
 - 1999: \(y = \frac{(18.42 \times x)}{1 + (x \times 18.42/100)} \)
 - \(R^2 = 0.98 \)

Datura stramonium density (no. 9.1 m\(^{-1}\) of row)
<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
<th>Nature of Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0</td>
<td>A 0</td>
<td>Neither organism affects the other</td>
</tr>
<tr>
<td>Competition</td>
<td>- -</td>
<td>0 0</td>
<td>Both A and B affected negatively</td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ +</td>
<td>- -</td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ +</td>
<td>0 0</td>
<td>Not obligate</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0</td>
<td>- 0</td>
<td>A obligate commensal; B host</td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0</td>
<td>0 0</td>
<td>A harmed by presence of B</td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ -</td>
<td>- 0</td>
<td>A parasite. B host</td>
</tr>
<tr>
<td>Predation</td>
<td>+ -</td>
<td>- 0</td>
<td>A predator. B prey</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; – organism growth decreased; 0 organism growth not affected.
TABLE 11.1

Types of Two-Species Interactions as Defined by Odum

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0 B 0</td>
<td>A 0 B 0</td>
</tr>
<tr>
<td>Competition</td>
<td>- - 0 0</td>
<td></td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ + - -</td>
<td></td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ + 0 0</td>
<td></td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0 - -</td>
<td></td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0 0</td>
<td></td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ - -</td>
<td></td>
</tr>
<tr>
<td>Predation</td>
<td>+ - -</td>
<td></td>
</tr>
</tbody>
</table>

Nature of Interaction
- Neither organism affects the other
- Both A and B affected negatively
- Obligate interaction
- Not obligate

Note: + organism growth increased; – organism growth not affected.
TABLE 11.1
Types of Two-Species Interactions as Defined by Odum

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
<th>Nature of Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A B</td>
<td>A B</td>
<td>Neither organism affects the other</td>
</tr>
<tr>
<td>Competition</td>
<td>- -</td>
<td>0 0</td>
<td>Both A and B affected negatively</td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ +</td>
<td>- -</td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ +</td>
<td>0 0</td>
<td>Not obligate</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0</td>
<td>- 0</td>
<td>A obligate commensal; B host</td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0</td>
<td>0 0</td>
<td>A harmed by presence of B</td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ -</td>
<td>- 0</td>
<td>A parasite; B host</td>
</tr>
<tr>
<td>Predation</td>
<td>+ -</td>
<td>- 0</td>
<td>A predator; B prey</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; − organism growth decreased; 0 organism growth not affected.
TABLE 11.1
Types of Two-Species Interactions as Defined by Odum

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Not Interacting</th>
<th>Nature of Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interacting</td>
<td></td>
</tr>
<tr>
<td>Neutralism</td>
<td>0 0</td>
<td>Neither organism affects the other</td>
</tr>
<tr>
<td>Competition</td>
<td>0 0</td>
<td>Both A and B affected negatively</td>
</tr>
<tr>
<td>Mutualism</td>
<td>0 0</td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Protocooperation</td>
<td>0 0</td>
<td>Not obligate</td>
</tr>
<tr>
<td>Commensalism</td>
<td>0 0</td>
<td>A obligate commensal; B host</td>
</tr>
<tr>
<td>Amensalism</td>
<td>0 0</td>
<td>A harmed by presence of B</td>
</tr>
<tr>
<td>Parasitism</td>
<td>0 0</td>
<td>A parasite; B host</td>
</tr>
<tr>
<td>Predation</td>
<td>0 0</td>
<td>A predator; B prey</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; – organism growth decreased; 0 organism growth not affected.
<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
<th>Nature of Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0 B 0</td>
<td>A 0 B 0</td>
<td>Neither organism affects the other</td>
</tr>
<tr>
<td>Competition</td>
<td>- - 0 0</td>
<td></td>
<td>Both A and B affected negatively</td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ + - -</td>
<td></td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Protocoooperation</td>
<td>+ + 0 0</td>
<td></td>
<td>Not obligate</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0 - 0</td>
<td></td>
<td>A obligate commensal; B host</td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0 0 0</td>
<td></td>
<td>A harmed by presence of B</td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ - - 0</td>
<td></td>
<td>A parasite; B host</td>
</tr>
<tr>
<td>Predation</td>
<td>+ - - 0</td>
<td></td>
<td>A predator; B prey</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; - organism growth decreased; 0 organism growth not affected.
<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0 B 0</td>
<td>A 0 B 0</td>
</tr>
<tr>
<td>Competition</td>
<td>- - 0 0</td>
<td></td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ + - -</td>
<td></td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ + 0 0</td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0 - 0</td>
<td></td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ - - 0</td>
<td>A parasite, B host</td>
</tr>
<tr>
<td>Predation</td>
<td>+ - - 0</td>
<td>A predator, B prey</td>
</tr>
</tbody>
</table>

Nature of Interaction:
- Neutralism: Neither organism affects the other.
- Competition: Both A and B are affected negatively.
- Mutualism: Obligate interaction.
- Protocooperation: Not obligate.
- Commensalism: B host.
- Amensalism: A harmed by presence of B.
- Parasitism: A parasite, B host.
- Predation: A predator, B prey.

Note: + organism growth increased; - organism growth decreased; 0 organism growth not affected.
TABLE 11.1
Types of Two-Species Interactions as Defined by Odum

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Interacting</th>
<th>Not Interacting</th>
<th>Nature of Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralism</td>
<td>A 0 B 0</td>
<td>A 0 B 0</td>
<td>Neither organism affects the other</td>
</tr>
<tr>
<td>Competition</td>
<td>- - 0 0</td>
<td></td>
<td>Both A and B affected negatively</td>
</tr>
<tr>
<td>Mutualism</td>
<td>+ + - -</td>
<td></td>
<td>Obligate interaction</td>
</tr>
<tr>
<td>Protocooperation</td>
<td>+ + 0 0</td>
<td></td>
<td>Not obligate</td>
</tr>
<tr>
<td>Commensalism</td>
<td>+ 0 - 0</td>
<td></td>
<td>A obligate commensal; B host</td>
</tr>
<tr>
<td>Amensalism</td>
<td>- 0 0 0</td>
<td></td>
<td>A harmed by presence of B</td>
</tr>
<tr>
<td>Parasitism</td>
<td>+ - - 0</td>
<td></td>
<td>A parasite; B host</td>
</tr>
<tr>
<td>Predation</td>
<td>+ - - 0</td>
<td></td>
<td>A predator; B prey</td>
</tr>
</tbody>
</table>

Note: + organism growth increased; - organism growth decreased; 0 organism growth not affected.
TABLE 11.2
Summary of Interference Interactions

<table>
<thead>
<tr>
<th>Creator of Interference (A)</th>
<th>Receiver(s) of Interference (B)</th>
<th>Type and Identity of Interference</th>
<th>Location of Interference</th>
<th>Effect on A*</th>
<th>Effect on B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td>Roles interchangeable</td>
<td>Removal of resources</td>
<td>Shared habitat</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Parasitism</td>
<td>Parasite</td>
<td>Removal of nutrients</td>
<td>Body of host</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Herbivory</td>
<td>Herbivore</td>
<td>Removal of biomass</td>
<td>Body of host:</td>
<td>+ or –</td>
<td>– or +</td>
</tr>
<tr>
<td></td>
<td>Consumeet</td>
<td></td>
<td>shared habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epiphytism</td>
<td>Host</td>
<td>Addition of habitat surface</td>
<td>Body of host</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Proto-cooperation</td>
<td>Roles interchangeable</td>
<td>Addition of material or structure</td>
<td>Shared habitat or body of A/B</td>
<td>+ (0)</td>
<td>+ (0)</td>
</tr>
<tr>
<td>Mutualism</td>
<td>Roles interchangeable</td>
<td>Addition of material or structure</td>
<td>Shared habitat or body of A/B</td>
<td>+ (-)</td>
<td>+ (-)</td>
</tr>
<tr>
<td>Allelopathy</td>
<td>Allelopathic plant</td>
<td>Addition of active compound</td>
<td>Habitat of organism A</td>
<td>+ or 0</td>
<td>+, -, or 0</td>
</tr>
<tr>
<td></td>
<td>Potential habitat associates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Symbols in parenthesis refer to the effect when the organisms are not interacting.
It can Get Complicated!

Simple Two Species

Removal and Addition Interference

Tri-Trophic Example
It can Get Complicated!

Simple Two Species

Tri-Trophic Example
It can Get Complicated!

Simple Two Species
Ecosystem Recovery and Diversity

- **Dynamic Equilibrium**: Stability resulting from opposing forces within a system
- **Succession**: Recovery after disturbance
- **Climax**: A community that demonstrates DE
- However, climax communities may not be the most diverse
- **Intermediate Disturbance Hypothesis**
 - Diversity is greatest when disturbance is neither too frequent or infrequent
 - Mosaic of successional stages
Disturbance

• An event of intense environmental stress occurring over a relatively short period of time and causing large changes in the affected ecosystem

• Natural Systems: Fire, Invasion, Storms, Earthquakes, Floods

• Agricultural Systems: Harvest, Cultivation, Pesticides

• Pest Management = Ecological Disturbance
• Different ecotypes lead to different climax communities
• Disturbance often leads to a mosaic of different stages
• Some agricultural rotations mimic this
Natural vs. Agroecosystems

- **Primary Difference:** System Boundaries
 - Natural systems have “harder” boundaries
 - Human interactions open systems up
 - Globalization of food systems represent the pinnacle of this trend

- **Secondary Difference:** Reduced Stability/Diversity
 - Maximization of harvestable NPP
 - Homogeneous Habitat, Open Niches = Pest potential
Sustainable Agroecosystems

- Ecological Stability + Yield
- Energy Efficient: Maximization of NPP
- Reduced inputs
- "Law of Return" practiced: conservation of nutrients